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Abstract

In many solid/liquid phase transformation processes, natural convection controls the freezing or melting rate of

the material. Freezing or melting in the presence of nonmelting components is important in numerous industrial
processes and is also present in a wide range of systems in nature. The kinematics of the solid±liquid interface,
coupled with bulk convection in the melt, play an important role in determining the microstructure of a solidi®ed
material. The fundamental problem of thermoconvective instability of a single-component ¯uid in a horizontal

porous layer has been studied extensively; additional complexities arise during solidi®cation due to the presence of a
non-melting component, namely the porous medium. This study addresses the problem of Rayleigh±BeÂ nard
instability of a liquid layer undergoing a phase transformation within a porous medium. A linear stability analysis is

performed to determine the e�ects of the medium and phase-change on the conditions for incipient instability under
a range of thermal boundary conditions. The analysis reveals that the onset of convection, or the stability of the
system, is signi®cantly a�ected by the presence of the porous medium, state of solidi®cation and the thermal

boundary conditions. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The problem of thermoconvective instability in a
horizontal ¯uid layer driven by buoyancy e�ects stu-

died extensively in the literature [1±3] encompasses
unresolved complexities associated with the freezing or
melting of a liquid in the presence of a nonmelting
component, such as a solid matrix or soil. This

study addresses hydrodynamic stability issues during
solidi®cation of such mixtures by modeling the
matrix±liquid slurry as a liquid saturated horizontal

porous medium in a gravitational ®eld going through a
phase change under a full range of thermal conditions
at the lower bounding surface. Freezing or melting in

the presence of nonmelting components is important in

industrial applications as well as in a wide range
of systems in nature. Examples include, but are not
limited to, seasonal freezing and melting of soil, lakes

and rivers, arti®cial freezing of the ground as a con-
struction technique for supporting poor soils, insula-
tion of underground buildings, the melting of the
upper permafrost in the Arctic due to buried pipelines,

thermal energy storage in porous media and storage of
frozen foods. Metallurgical applications include manu-
facturing of composite materials and puri®cation of

metals. The study of freezing and melting in porous
media has gained a great interest over the past few
years. A fundamental understanding of convective

stability in such a range of applications is thus very
important.
It is recognized that ¯uid ¯ow, in general, and buoy-

ancy-driven ¯ow, in particular, plays a critical role in

determining interfacial traits of a solidifying material;
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Nomenclature

a separation constant or wave number
ac critical wave number
A solid thickness ratio

BL Biot number, h1Z0/kL
ca acceleration coe�cient
ci general constants for characteristic equation

cp speci®c heat at constant pressure
D di�erential operator, D=d/dz, D 2=d2/dz 2

Da Darcy number, K/Z 2
0

f temperature perturbation variable (liquid), see Eq. (33)
g temperature perturbation variable (solid), see Eq. (33)
g gravitational acceleration vector
hSL speci®c latent heat of solid

h1 heat transfer coe�cient of the bulk environment
kÃ, zÃ unit vector in the z-direction
kL,S thermal conductivity for liquid and solid, respectively

K permeability of the porous medium
L length of the solidi®cation system
n, tÃi unit normal and tangent vectors

Pr Prandtl number, nL/aL
Ra Rayleigh number, gb(TLÿTM)Z 3

0/nLaL
Rac (Rac) critical Rayleigh±Darcy number, Rc � Da

Rc (Rc) critical Rayleigh number
St Stefan number, hSL/cpDTL

T temperature
T1 upper plate temperature

T10 lower plate temperature
TM interface melting temperature
v velocity vector for liquid, v=v(u, v, w )

w velocity component in the z-direction for the liquid
wÃ vertical velocity perturbation variable
z spatial coordinate in vertical direction for liquid.

Greek symbols

a ratio of the thermal di�usivities of the liquid and the solid, aL/aS
b volumetric coe�cient of thermal expansion
ga acceleration coe�cient, ca/sH Pr

DTL temperature di�erence across the porous layer
Z interface position coordinate
Z normalized perturbation variable for the interface position

Z0 length of the liquid saturated porous region
Zt time rate of change of the interface
m me�/mL
mL dynamic viscosity

nL kinematic viscosity
r ratio of the densities of the liquid and the solid, rL/rS
s real part of the complex growth rate [s]

sH heat capacity ratio, see Eq. (3)
f medium porosity
F pattern planform, where F=F(x, y )
H2 Laplacian operator
H2
H 2-D Laplacian operator, see Eq. (35).
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¯uid motion adjacent to a solidifying interface a�ects

the local thermal and solutal ®elds which control the
geometric, dynamic and thermodynamic characteristics
of the interface. For instance, convection during fabri-

cation or solidi®cation processing of metal matrix com-
posites a�ects the distribution of particulates in the
composites, in turn in¯uencing the properties of the
material. In the pure metal analog, independent of

the solute di�usion, it is also known that the convec-
tive stability is a�ected by the density and presence of
particulates as well as by the conductivity of the

boundary. The porous medium model simulates the in-
¯uences of a non-interacting matrix, coupled with a
range of thermal conditions at the lower boundary, on

the initiation and growth of bulk convection in a sol-
idifying nonhomogeneous system. This study focuses
on the e�ect of the permeability of a porous medium

and phase change on the incipient convection in the
interstitial liquid; by parametrically changing the per-
meability from that corresponding to a Darcy model
of the ¯ow through it to a vanishing one, an under-

standing is gained for the in¯uence of volume fraction
and its distribution on the critical conditions for con-
vective stability of the interstitial ¯uid in porous media

in the presence of solidi®cation.
This work couples solidi®cation dynamics with the

thermal and hydrodynamic ®elds in a nonhomo-

geneous solidifying system via a Rayleigh±BeÂ nard stab-
ility analysis. The porous medium is saturated with the
liquid in all available pores, or the interparticle space

of the medium, leaving no space for a vapor, gas, or
other liquid within the medium
Since the pioneering work on the porous-medium

analog of the Rayleigh±BeÂ nard stability problem [4],

the subject of phase-change in a porous medium has
received increasing attention over the past two decades.
While liquid/gas phase change in a saturated porous

medium has received considerable attention, solid/
liquid phase change in liquid-saturated porous medium

has received considerably less attention. Such problems

and their manifestation represent a relatively new area
in the ®eld of convection in porous media [5]. This
study considers a horizontal, liquid saturated, porous

medium undergoing solidi®cation while being cooled
uniformly from above. A recent study [6] examined the
coupled e�ects on stability arising from thermal con-
vection and solidi®cation of a single-component liquid

in a porous medium. The stability of the basic state of
heat conduction and the stability of ®nite-amplitude
convection in the Darcy limit of vanishing permeability

for isothermal boundaries were examined via a two-
parameter perturbation analysis. The present work
investigates the e�ects of the solid matrix in a pure

melt on the thermal convection for a range of per-
meabilities and the full range of lower wall thermal
boundary conditions. The cited references are based on

the Darcy ¯ow model, and hence are relevant to well
packed low permeability porous media. This study
di�ers by including the Brinkman extended ¯ow model
that allows for the investigation of sparsely packed

media.
Beyond the context of convective stability, there

exists substantial research in porous media transport

phenomena germane to the present work. Non-
Darcian e�ects have been modeled illustrating the tran-
sition between the porous and clear ¯uid limits by

modifying the Darcy equation with the Brinkman term
[10]. Also experiments have been conducted using a
modi®ed Darcy equation incorporating the

Forchheimer term which attempts to account for
microscopic drag forces due to acceleration [11]. It was
demonstrated experimentally [7] that an e�ective por-
ous medium thermal conductivity model is adequate

for heat transfer estimates only when the solid matrix
and pore-material have su�ciently similar thermal con-
ductivities to allow for the requisite local thermal equi-

librium. A continuum model of the porous medium
was developed [8] for analyzing solid/liquid phase

Subscripts

e� e�ective property for porous medium
L liquid property or region
M melting temperature

S solid property or region
0 reference state
1 bulk environment.

Superscripts

bar, basic state quantity
' perturbation variable
� normalized.
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change in a porous medium that accounted for inertia
as well as boundary friction e�ects. In particular, these

include the Brinkman viscous and the Forchheimer
pressure drag terms. Such results are relevant to the
present work where the liquid and the porous material

have similar conductivities, and where friction due to
microscopic shear is also important.

2. The mathematical model

A quiescent horizontal layer of a pure ¯uid in a
gravitational ®eld heated from below does not always

remain so in the presence of an adverse density gradi-
ent beyond a threshold value which is capable of
giving rise to ¯uid motion. This observation may be
applied to examine the solidi®cation (or melting) of a

porous layer saturated with a pure liquid enclosed
between two rigid, parallel, thermally dissimilar, hori-
zontal plates of in®nite extent, a distance L apart, in a

gravitational ®eld, as shown in Fig. 1. The analytical
model is formulated under the assumptions that the
liquid in the upper part of the layer is frozen and the

e�ective thermophysical and transport properties of
the porous medium are homogeneous and isotropic.
The porous matrix and the solidi®ed layer are both
assumed to be rigid [8]. Fluid motion within the por-

ous medium is described via a Newtonian, Boussinesq
model of the Navier±Stokes equations, written for a

liquid saturated porous medium. Motion due to den-
sity change upon phase change is not considered to be
signi®cant. The liquid velocity through the medium is

deemed su�ciently small, conforming to the Darcy
regime, or, at most, to the Brinkman-modi®ed Darcy
regime. The melt±freeze front is assumed to be a

thin surface of negligible thickness that remains at the
melting point of the phase-change material. The ¯uid
layer is separated at the bottom from the surroundings

by a thin rigid lamina of negligible heat capacity.
The upper plate is maintained at a constant tempera-
ture, T1.

2.1. Governing equations

In the porous layer, the heat transfer at the lower
surface of the system is via a convective±conductive
mechanism. The ¯ux at the bottom plate is maintained

such that the melting temperature, TM, is bounded
between the lower plate temperature, T10, and the
upper plate temperature, T1 (T10>TM>T1). Therefore,

there is a solid±liquid interface at z=Z0, 0 < Z0 < L.
The governing equations are written in a Cartesian
frame ®xed with respect to the composite system on
the lower plate with the positive z-axis pointing

Fig. 1. Solidi®cation model with saturated porous medium.
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upward (see Fig. 1). The temperature ®eld within the
solidi®ed layer is described by the thermal energy

equation

@TS

@ t
� aSr2TS: �1�

For the liquid, the temperature ®eld may be obtained
from a simultaneous solution of the thermal energy
and continuity equations, together with the Boussinesq

model of the Darcy-extended momentum equation.
These are expressed, respectively, as

sH
@TL

@ t
� v � rTL � aLr2TL �2�

where

sH � f�rcr�L�1ÿ f��rcr�S
�rcr�L

� heat capacity ratio �3�

r � v � 0 �4�

and

carL

@v

@ t
� ÿrPÿ

�
mL

K

�
v� meffr2v

� rLb�TL ÿ Tref�gk̂
�5�

where ca is a constant which depends on the geometry
of the porous medium and is determined by the nature
of the assumed model pore tubes [5]. In most cases,

the term becomes negligible when suitably scaled. This
is due to the small value of permeability which multi-
plies the scaled inertia term.
In the proceeding governing equations, the

Brinkman-extended Darcy momentum model is
employed. The frictional e�ects represented by Darcy
law in the ¯uid momentum equation in a porous med-

ium, are two orders of magnitude lower than those
represented in the Navier±Stokes equations. Thus,
only the impermeability condition at the surface is sat-

is®ed, leaving the no-slip boundary condition unre-
solved. The Brinkman-extended Darcy model satis®es
not only the impermeability and no-slip conditions but
accounts also for the friction caused by microscopic

shear by introducing an additional viscous force term
via an e�ective dynamic viscosity, me�H

2v. The
Brinkman-extended model reduces to a form of

the Navier±Stokes model as the medium permeability
approach in®nity (K 4 1) and to the conven-
tional Darcy model as the medium permeability

approach zero (K 4 0). Such a formulation allows a
comparison of the ¯ows in porous media with those in
clear ¯uids.

2.2. Boundary conditions

The boundary conditions at the phase boundary are
the continuity of temperature

TL � TS � TM �6�

where the interface curvature due to undercooling

of the melt is neglected, and the conservation of
energy

rShSL
@Z
@ t
�j kSrTS ÿ kLrTL j �n: �7�

Also de®ned on this boundary (interface) are the con-

servation of mass (the kinematic condition)

rL�v � n� � �rL ÿ rS�
@Z
@ t

k � n �8�

and the no-slip condition

v � t1 � v � t2: �9�

The boundary conditions on the two bounding sur-
faces are

at z � 0, ÿ kL
dTL

dz

����
0

� h1�T1 ÿ T10�

and at z � L, TS � T1:

�10�

3. Basic state and linear stability analysis

Initially, the stationary system is in a static equi-
librium state with no ¯uid motion and a planar

interface at z=Z0. The purely conductive temperature
pro®les in the liquid and the solid regions are, respect-
ively, given by

TL � ÿh1�T1 ÿ TM�z
h1Z0 � kL

� �T1 ÿ TM�h1Z0
h1Z0 � kL

� TM �11�

and

TS � TM ÿ T1

Z0 ÿ L
zÿ Z0�TM ÿ T1�

Z0 ÿ L
� TM: �12�

The static equilibrium temperature pro®les are used to
normalize the solid and liquid temperatures, respect-

ively, as

T �L �
TL ÿ TM

T10 j ÿTM

; T �s �
TS ÿ T1

TM ÿ T1
: �13�
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The scales for, v, x (and y, z ), t and p are chosen,
respectively, as

aL

Z0
,Z0,

sHZ20
aL

and
rLnLaL

Z20
:

The normalized equations become, after dropping the
asterisks, for the solid,�

1

sH

�
@TS

@ t
� aS

aL

r2TS �14�

and for the liquid,

@TL

@ t
� v � rTL � r2TL, r � v � 0 �15a,b�

and

ga

@v

@ t
� rP�

�
1

Da

�
vÿ ~mr2v� Ra TLk � 0: �16�

The normalized boundary conditions on the interface

are

v � t1 � �1ÿ r�
sH

Ztk � n, v1 � t1 � v2 � t2 � 0 �17a,b�

r St Pr
@Z
@ t
� �ArTL ÿ rTS� � n,

and TL � TS � 0:

�18a,b�

The surface boundary conditions become

at z � 0,
dTL

dz
� BLTL, and at z � L,TS � 1: �19a,b�

It may be noted that the dimensionless group, BL, acts
like a Biot number for heat transfer from the bulk en-

vironment to the liquid. As BL approaches zero, the
boundary condition at the surface approaches that of
an insulated surface; as BL approaches in®nity, the

boundary condition approaches that of a constant sur-
face temperature; also appearing is another dimension-
less parameter:

A � Lÿ Z0
Z0

� kS

kL

DTS

DTL

�20�

where z=Z0 is the position of the planar interface and
z=L is the thickness of the combined solid±liquid sys-
tem. For a small A, Aÿ1 may be considered the equiv-

alent Biot number for heat transfer from the liquid to
the solid; also, A measures the amount of solid present
in the system [9].

The basic state under consideration is that of a
stagnant layer of liquid, with a hydrostatic pressure
distribution, and a purely conductive temperature

distribution. In normalized form the basic state
becomes (denoted by variables with bars on top)

v � 0;
d �p

dz
� Ra �TLk �21�

and

�TL � 1ÿ z; �TS � 1ÿ zÿ 1

Lÿ 1
: �22�

It is noted that TL and TS are scaled by di�erent refer-
ence lengths. Thus at z=1, the temperature for the

solid and liquid regions (TL and TS) are equal to the
melting temperature, TM [Eq. (12)]. Next, a linear
perturbation model of the system is developed by

considering a slight change in temperature due to a
slight melting of the solid. Such a problem is formu-
lated by introducing perturbations of the basic state

de®ned via a conventional barred-primed scheme of
notations as

TS � �TS � T 0S, TL � �TL � T 0L �23�

v � v 0, p � �p � p 0, Z � 1� Z 0: �24�

Introduction of the perturbation expressions, Eqs. (23)

and (24), into the governing Eqs. (14)±(16), followed
by linearization in the disturbance quantities, yields the
perturbation model for the solid,�

1

sH

�
@T 0S
@ t
�
�
aS

aL

�
r2T 0S �25�

and for the liquid

@T 0L
@ t
� w 0 � r2T 0L, r � v 0 � 0 �26�

and

ga

@v 0

@ t
� rp 0 �

�
1

Da

�
v 0 ÿ ~mr2v 0 � Ra T 0Lk � 0 �27�

where w ' is the vertical component of the perturbation
velocity v '. The linearized boundary conditions for the
perturbation model are

at z � 1, T 0S � ÿZ 0 @
�TS

@z
, T 0L � ÿZ 0 @

�TL

@z
�28�

r St Pr

�
@Z 0

@ t

�
� A

@T 0S
@z
ÿ @T

0
L

@z
�29�
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and

u 0 � �1ÿ r�
�
@Z
@x

�
0, v 0 � �1ÿ r�

�
@Z
@y

�
0,

w 0 � �1ÿ r�@Z
@ t
:

�30�

The surface boundary conditions become

at z � 0,
dT 0L

dz
� BLT

0
L, and at z � L,

T 0S � 0:

�31�

The solution to the preceding set of equations results
in a su�cient condition to ascertain the stability
boundary of the liquid layer, as would be expected
from the linear analysis.

The linear perturbation system, [Eqs. (25)±(31)], is
examined to determine the critical and necessary con-
ditions for incipient nonlinear convection. After elimi-

nating the pressure from the liquid momentum
equation [Eq. (27)] by taking its curl, the curl is taken
again, yielding

ÿga

@

@ t
�r2w� ÿ 1

Da
r2w� r2�r2w� � Ra r2

HTL � 0

@TL

@ t
ÿ wÿ r2TL � 0

r2TS � 0

(32)

where the primes have been dropped. Next, to

®nd normal modes solution to the linear stability
problem it is noted that the variables become separ-
able under this assumption, yielding solutions of the

form

fTS,TL,w,Zg � fg�z�,f �z�,ŵ,Ẑg estF�x,y� �33�

where the time constant, s=sr+isi, contains sr,
the growth rate, and si, the frequency of the disturb-
ance, and F is the plan form function which deter-

mines the cellular structure of the ¯uid motion and
satis®es the two-dimensional wave or membrane
equation

Fxx � Fyy � ÿa2F �34�

or

r2
HF� a2F � 0, where r2

H �
@

@x 2
� @

@y2
: �35�

It may be noted that `a' is the separation constant,
mathematically, in addition to being the nondimen-
sional overall wave number, physically.

Substitution of the normal mode into the linear per-
turbation model [Eq. (32)] results in the normal-mode

disturbance equations for the solid

sg � aS

aL

�D2 ÿ a2�g �36�

and, for the liquid

sf � ŵ� �D2 ÿ a2� f �37�

and

ÿgas�D2 ÿ a2�ŵ �
�

1

Da

�
�D2 ÿ a2�ŵ

ÿ �D2 ÿ a2�2ŵ� Ra a2f

�38�

where an ordinary di�erential operator, D, has been
de®ned as

D � d

dz
and D2 � d2

dz2
: �39�

The boundary conditions transform as

g�L� � 0, g�1� � Ẑ
A

�40�

for the solid region, and

Df �1� � ADg�1� ŵ�1� � 1ÿ rsZ Dŵ�1� � 1ÿ rsZ

ŵ�0� � 0 Dŵ�0� � 0 Df �0� � BLf �0�
�41�

in the liquid region.

4. Solutions

4.1. Solid region solution

It is noticed that the general solution for the solidi-

®ed layer may be obtained independent of the liquid
equations, resulting in

g�z� � C1 sinh �az� � C2 cosh �az�: �42�

Use of the boundary conditions, [Eq. (41)], yields the
temperature pro®le in the solid as

g�z� � ÿZ sinh �a�1� Aÿ z��
A sinh �aA� : �43�

It was necessary ®rst to solve for the solid region, inde-

pendent of the liquid region, in order to express all of
the governing equations in the liquid region in terms
of the temperature perturbation variable, f.
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4.2. Liquid region solution

The ®rst two (liquid momentum and energy)
equations in Eq. (32) are combined, thus eliminating
the vertical velocity component, forming a single-vari-

able perturbation equation in terms of the normal
mode perturbation temperature, f. The combined ex-
pression becomes�
ÿ gas

2 ÿ s
1

Da

�
�D2 ÿ a2� f�

�
gas�

1

Da
� ~ms

�
� �D2 ÿ a2�2fÿ ~m �D2 ÿ a2�3f� Ra a2f � 0:

�44�

Next, it is assumed that the principle of exchange of
stability is valid, or that all possible values of the
growth rate allowable are real. The implication of s
being real is that the neutral or marginal stability
curve is characterized by a growth rate, s, of zero.
Accordingly, the single-variable temperature pertur-

bation equation for the liquid [Eq. (44)] reduces to a
sixth-order, linear, homogeneous equation

�D2 ÿ a2�3fÿ
�

1

Da

�
�D2 ÿ a2�2f� Ra a2f � 0 �45�

with six linear, homogeneous boundary conditions
(determined by applying the solid solution) and evalu-
ating the continuity and thermal energy equations at

z=(0, 1), given as

�D2 ÿ a2� f�0� � 0, �D2 ÿ a2� f�1� � 0

D�D2 ÿ a2� f�0� � 0, D�D2 ÿ a2� f�1� � 0

Df �0� � BLf �0� and Df �1� � a Coth �aA�f �1� � 0:

�46�
The linear, homogeneous, sixth-order system [Eqs. (45)

and (46)] constitutes an eigenvalue problem. The sys-
tem obviously has the trivial solution, f=0, for any
values of a, BL, Ra, and Da, but, in general, also pos-

sesses non-trivial solutions depending on an eigenvalue,
say l, and has a general solution obtained as a linear
combination of six linearly independent solutions. In
this case, a, BL, and Da become ®xed parameters, with

Ra serving as the eigenvalue, producing non-trivial
continuous solutions for the perturbation temperature
eigenfunction, f(z ). Use of the six boundary conditions

and the general solution, f(z ), yields six simultaneous
linear equations. This de®nes the eigenvalue problem
in which Ra serves as the eigenvalue for a particular

set of values for a, BL, Da and A. The critical
Rayleigh number for the onset of convection has a cor-
responding critical wave number, both of which being

the minimum values satisfying each value as an eigen-
value. The solution for the stability problem is

obtained for given values of BL, Da and A, by deter-
mining iteratively the lowest characteristic values of a
and Ra.

5. Results and discussion

The linear stability analysis for the system in this

work has two experimentally veri®able results: the
critical temperature di�erence for the onset of convec-
tion and the corresponding critical wavelength. For a
range of boundary conditions varying from a constant

temperature to a constant heat ¯ux, the incipient con-
ditions for convection for a pure liquid solidifying in a
porous medium are determined.

5.1. E�ect of varying solid thickness and boundary
conditions

Since the solid portion of the porous medium is typi-
cally held at temperatures below the melt temperature,
initial freezing begins with the contact between the

medium and the superheated liquid. Physically, the
removal of the latent heat takes place rapidly, creating
a thin coating on the porous medium, the degree to

which the permeability is a�ected due to such a
phenomenon being quite small. Therefore, any change
in permeability will be due to the solidi®cation of the

interstitial ¯uid within the slightly coated matrix. In
the model, cooled from above, and/or heated from
below, solidi®cation occurs only at the interface;

interstitial solidi®cation does not occur. Therefore,
Figs. 2±8, the critical conditions for incipient convec-
tion at ®xed permeabilities are noted.
As the solidi®ed portion of the system grows, or as,

the aspect ratio of the layer, A, increases for a set of
®xed values of the Darcy number, Da, and the Biot
number, BL, the critical Rayleigh number of the system

decreases, rendering the system less stable. It may be
noted, for a system with no solidi®cation (A=0), con-
stant temperature boundary, BL=1000, and a dense

medium, DaE10ÿ6, that the classical problem of con-
vection in a porous medium between two in®nite walls,
the so-called `Lapwood problem', and the solution of
Rac=4p 2=39.45 are recovered. Departure from the

classical problem of rigid boundaries was determined
as a function of solid thickness and the results are
designated on Figs. 2±7 as the Lapwood problem re-

covering the results of Karcher et al. Results for other
conditions may be compared with those resulting from
the modi®ed classical Lapwood case. Figs. 2±4 illus-

trate the e�ect of the solid thickness ratio on the criti-
cal Rayleigh number for ®xed permeability for
di�erent boundary conditions, compared to the modi-
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®ed Lapwood solution, which is denoted by a thin

dashed line. The ®gures also show that as the bound-
ary condition at the bottom wall is modi®ed from that
of a ®xed temperature (BL 41), to that of an insu-
lated boundary (BL 4 0), the system becomes less

stable. For all values of the Darcy number considered,
simultaneously increasing both the solid thickness ratio
and the Biot number has a strictly stabilizing in¯uence.

Figs. 2±7 indicate further that the critical Rayleigh±

Darcy and wave numbers approach their lower limits

asymptotically as A 4 1. Such a destabilizing e�ect
was previously documented for solidi®cation in a bulk
liquid-layer [9] as well as in a dense liquid saturated
porous medium [6]. Considering the limiting case of an

isothermal lower wall (BL=1000) and a densely packed
medium (Da=10ÿ6), there is a 16.44% decrease in the
critical Rayleigh±Darcy number as the (normalized)

solid thickness, A, increases monotonically from 0±1;

Fig. 3. Critical Rayleigh±Darcy number vs. solid thickness ratio for Da=10ÿ4.

Fig. 2. Critical Rayleigh±Darcy number vs. solid thickness ratio for Da=10ÿ6.
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Fig. 5. Critical wave number vs. solid thickness ratio for Da=10ÿ6.

Fig. 4. Critical Rayleigh±Darcy number vs. solid thickness ratio for Da=10ÿ3.
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for the less dense case of Da=10ÿ3 (and an isothermal
bottom wall), as the solid thickness ratio increases

monotonically, the critical Rayleigh number decreases
by 6.4%. Such a comparison at two di�erent per-
meabilities suggests that as the system becomes more

dense it is more susceptible to instability, a conclusion

that may appear to be counterintuitive at ®rst.
However, it should be noted that Fig. 8 presents a plot

of the critical Rayleigh±Darcy number as a function of
the Darcy number. It shows that the medium will be
less stable as its permeability approaches that of a

liquid layer. Physically, the liquid layer presents less

Fig. 7. Critical wave number vs. solid thickness ratio for Da=10ÿ3.

Fig. 6. Critical wave number vs. solid thickness ratio for Da=10ÿ4.
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resistance to the growth and development of an initial

disturbance; whereas the porous medium acts to con-

strict such ¯ow initiation. Thus, as the Darcy number
is increased towards the clear liquid limit, non-Darcian

e�ects become more pervasive and the critical con-

ditions deviate more from the predicted limiting values

for the porous case. The Brinkman-extended Darcy

model employed in this work allows for the compari-
son between the critical phenomena in a homogeneous

liquid vis-aÁ -vis that in a saturated porous layer. Thus,

an increase in the amount of solid in the system as

well as in the Darcy number of the medium has a
destabilizing in¯uence.

The results in Figs. 5±7 indicate that the critical
wave numbers tend to become decreased fractions of

the critical wave number for the corresponding classi-

cal cases as the boundary condition approaches that of

an insulated boundary, Theoretically, it is known that

in the case of upper and lower insulated boundaries, a
vanishing wave number may be assumed. The present

results indicate that as the lower boundary becomes

less conductive, it acts to constrain the critical wave

number as expected from theory. However, in contrast,
as the Darcy number increases, the critical wave num-

ber tends towards a value that represents a higher frac-

tion of the classical result. Therefore, the largest

critical wave number corresponds to a case with maxi-

mized Biot (constant temperature boundary) and
Darcy numbers. In the BeÂ nard case (pure liquid layer),

which may be viewed as the limiting case of a porous

medium with an in®nite permeability (Daw0), the lar-
gest critical wave number corresponds to the limiting

case of a constant temperature boundary and a mini-
mum solid thickness (A=0). In other words, the
presence of the porous medium and the solid act to

constrain the size of the cell at the onset of convection.

5.2. E�ect of ®xed boundary conditions

In a typical physical situation the boundary during
the process has ®xed heat transfer characteristics,

usually that of an arbitrarily conducting boundary. By
comparing Figs. 2±5, it is noted that decreasing the
Biot number or moving towards a constant heat ¯ux

boundary has a stabilizing e�ect on the system (the
critical Rayleigh±Darcy number increases).
Figs. 2±4 show the critical Rayleigh±Darcy number,

Rac, dependence on the solid thickness for a variety of
medium permeabilities for a ®xed thermal boundary
condition. Fig. 8 also indicates that for all boundary
conditions the system is more stable as the medium

becomes more dense (Da4 0), with the constant heat
¯ux boundary among these being the least stable. For
Da4 1, the permeability of the medium may be con-

sidered in®nite as the di�erence in critical Rayleigh
numbers for this case and the classical BeÂ nard model is
negligible. On the other hand, a signi®cant increase in

Rc is observed for Da>10ÿ2. This introduces a tran-
sition region for values of Da where the medium is too
dense to be treated as a bulk liquid and too porous to

Fig. 8. Critical Rayleigh number vs. Darcy number a variety of boundary conditions (A=1).
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model as a porous medium thus introducing non-
Darcian behavior [10].

5.3. Solidi®cation of an aluminum preform

The linear stability analysis for the system in this
work has two experimentally veri®able physical results:
the critical temperature di�erence for the onset of con-

vection and the corresponding critical wavelength. This
analysis has demonstrated, for a range of boundary
conditions varying from a constant temperature to a

constant heat ¯ux, how the incipient conditions for
convection for a pure liquid solidifying in a homo-
geneous system may be determined. Speci®c calcu-
lations may be performed for a speci®c system of pure

aluminum solidifying in an alumina preform in a gravi-
tational ®eld, possessing the typical parameter values
for such aluminum melt systems as [12],

rL � 2:39� 103
kg

m3
, kL � 93

W

m K
, aL � 37� 10ÿ6

m2

s

mL � 1:3� 10ÿ3 Pa � s, DTL � 208C, Tf � 933:6 K

b � 23:1� 10ÿ6 Kÿ1, L � 0:01 m:

�47�

Fig. 9 indicates that it is possible to establish a relation
between the critical Rayleigh numbers based on solid

thickness ratio and the medium permeability as deter-
mined from the physical properties of the system to
the modi®ed Lapwood solution from the theoretical

analysis. It is shown that when the temperature di�er-
ence across the liquid layer is greater than 100 K, the
aluminum system is inde®nitely unstable compared to

the modi®ed Lapwood solution. If the system has a
temperature di�erence of 50 K, the system is unstable
depending on the solid thickness ratio. To maintain a

stable system other parameters would have to be
adjusted to compensate for the e�ects of the tempera-
ture gradient. For the given properties, the system is
always stable for a temperature di�erence of less than

10 K.

6. Closing remarks

The stability analysis performed for a solidifying
liquid±saturated porous medium allows calculations of

the critical Rayleigh and wave numbers for the incipi-
ent convective motion. In the asymptotic limits of
A 4 0, Da 4 0, and BL 41, the critical Rayleigh±

Fig. 9. Critical conditions for the solidi®cation of aluminum for various temperature di�erences across the liquid layer compared to

critical conditions for the modi®ed Lapwood solutions.
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Darcy number (4p 2) and wave number (p ) of the

classical Lapwood porous medium analysis are

recovered from the model examined in this work.

The presence of a solidi®cation boundary acts to

destabilize the system. As the solid thickness increases

the system becomes less stable as ascertained by a

decrease in the Rayleigh number marking the onset of

convection. Also, as the solid thickness is increased,

the nondimensional wave number decreases, thus

rendering smaller convection cells. The number of cells

is directly related to the solidi®cation rate and hence

the heat transfer rate. As the cell size decreases, a

greater heat transfer rate should be expected. The

largest wave number corresponds to the case with the

highest Biot (constant temperature lower boundary)

and Darcy numbers. Furthermore, as the lower bound-

ary condition is modi®ed from an isothermal surface

to an insulated boundary, the system becomes less

stable.

In comparison to the classical BeÂ nard problem or

that of solidi®cation of a pure liquid layer, the

presence of the porous medium renders the porous

Lapwood model more stable than the bulk liquid

analog. As the system becomes more dense or as the

permeability decreases, the system becomes more

stable. Also it was found that the presence of the

porous medium and the solidi®ed layer thickness

act to constrain the size of the cell at the onset of

convection.
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